使用这些数据集,我们可以得到工作项目和它们的结构。
Using these data sets, we can get the work items and their structures.
“巨型面”的创建者表示,这是目前最大的公共人脸识别数据集。
MegaFace's creators say it's the largest publicly available facial-recognition dataset out there.
由于数据集不是对称的,我们可以清楚地排除正态分布模型不是一个合适的选择。
As the dataset is not in a symmetrical shape, we can clearly rule out that a normal distribution model would not be a suitable choice.
问题是,对于许多想要设计系统来应对这些挑战的研究人员来说,实验所需的大量数据集根本不存在。
The trouble is, for many of the researchers who'd like to design systems to address these challenges, massive datasets for experimentation just don't exist.
他们使用的数据集不包括经济数据,所以研究人员转而研究2013至2016年幸福感的下降是否与经济指标有关。
The dataset they used did not include economic data, so instead the researchers looked at whether the 2013-16 wellbeing decline was tracking economic indicators.
“最终的人脸识别算法应该能在一个数据集里处理数十亿人的数据。”研究人员写道。
"An ultimate face recognition algorithm should perform with billions of people in a dataset," the researchers wrote.
开始测试,加载选中的输入数据集。
对数据集的分布进行建模。
度量数据集的分散性。
需要从这里才能删除虚拟数据集。
对于大型的数据集,这需要大量时间。
For large cubes, this requires a significant amount of time.
但是不生成多维数据集。
选择两个用于合并成虚拟数据集的数据集。
Select the two cubes to be aggregated to form the virtual cube.
设计olap多维数据集模型和多维数据集。
您可以从可用数据集列表中选择任意两个数据集。
数据集是BIRT从数据源中获得数据集的结果。
Data sets are result sets of data that BIRT retrieves from the data source.
它自动根据数据集的属性或特征对数据集进行分组。
It automatically groups datasets according to their properties or features.
这仅影响虚拟数据集,而不影响包含该维度的数据集。
This only affects the virtual cube, and not the cube that contains the dimension.
对于虚拟数据集,维度安全性继承自它的两个数据集。
For a virtual cube, the dimensional security is inherited from its two cubes.
虚拟数据集将根据合并运算符合并来自子数据集的结果。
The results are aggregated by the virtual cube according to the merge operator.
虚拟多维数据集将继承它的基础多维数据集的安全定义。
The virtual cube inherits the security definitions of its base cubes.
每次启动虚拟数据集时,它都检查两个数据集并执行合并。
Each time the virtual cube is started, it checks the two cubes and performs the merge.
属于占位符数据集模型的虚拟数据集称为VIRTUAL。
The virtual cubes belong to a placeholder cube model called VIRTUAL.
强类型数据集在速度和易于维护性方面优于非类型化数据集。
The strongly typed DataSet offers advantages over the untyped DataSet in terms of speed and easy maintainability.
就是拿一组输出值已知的数据集并使用此数据集来创建我们的模型。
This takes a data set with known output values and USES this data set to build our model.
仅当虚拟数据集的直接数据集启动或部署之后,才能启动或部署它。
A virtual cube can be started or deployed only after both its direct cubes are started or deployed.
这些说明也可以应用于基于多维数据集和多维数据集相关对象的查询。
The instructions can also be applied to queries based on the cube and cube-related objects.
除了级别合并之外,虚拟数据集还对子数据集的相同维度执行成员合并。
In addition to level merging, virtual cubes also perform member merging for the common dimensions of the depending cubes.
这些数据集内的知识库都可以被访问,并和其它数据集的内容连接在一起。
The data sets all grant access to their knowledge bases and link to items of other data sets.
不要删除两个原始的数据集,因为表格仍然会使用它们来实现关系数据集。
Do not delete the two original data sets, because the report still USES them to populate the joint data set.
应用推荐