利用经典大偏差的方法,在一定的条件下,得到了相应概率的对数渐近式及测度族的大偏差原理。
By traditional method of large deviations, we obtain the logarithmic asymptotic for the probabilities and large deviation principle for the corresponding measures.
研究了函数序列关于弱收敛概率测度序列积分的极限定理,给出了概率测度弱收敛的若干新的等价条件,得到了期望泛函序列上图收敛的一个充分条件。
Some new equivalent conditions of weak convergence of probability measure are presented and a sufficient condition for the epi-convergence of expectant functional sequence is obtained.
讨论一类可数离散半群上概率测度卷积幂的弱收敛性,主要结果是利用局部群化的观点给出了概率测度卷积幂弱收敛的一个充分条件。
The main result is that we get a sufficient condition for the weak convergence of convolution powers of probability measures, by using the method of local grouplization.
讨论一类可数离散半群上概率测度卷积幂的弱收敛性,主要结果是利用局部群化的观点给出了概率测度卷积幂弱收敛的一个充分条件。
The main result is that we get a sufficient condition for the weak convergence of convolution powers of probability measures, by using the method of local grouplization.
应用推荐