By applying a fixed point theorem, the authors study the existence of positive periodic solutions to a class of differential equations with stated-dependent delay.
运用不动点定理,研究一类具状态依赖时滞的微分方程周期正解的存在性。
By using a well-known fixed point index theorem, we obtain the existence, multiplicity and nonexistence of positive periodic solution(s) to this equation.
利用一个著名的不动点指标定理,获得了该方程周期正解的存在性、多重性和不存在性。
A fixed point theorem in cone is used to study the existence of normal solution of second-order periodic boundary value problems.
利用锥不动点定理研究了一类二阶非线性周期边值问题正解的存在性。
Accordingly we have weakly almost periodic of point in a bounded C-semigroup.
相应获得了有界c -半群点的弱概周期。
Some solvability conditions of periodic solutions are obtained for a class of first order(superquadratic) non-autonomous Hamiltonian systems in light of the minimax methods of critical point theory.
运用临界点理论中的极小、极大方法得到一类超二次哈密顿系统的周期解的存在性的存在性定理。
This paper presents a new existence theory for positive solutions to a kind of second-order discrete periodic boundary value problems by employing a fixed point theorem in cones.
运用锥不动点定理,给出了二阶离散周期边值问题正解的新的存在性定理。
Using the theory of fixed point, we give a theorem about the existence of asymptotically almost periodic solution for a class of delay integral equations.
利用不动点理论,给出了一类时滞积分方程渐近概周期解的存在性定理。
The stabilization of an unstable periodic orbit in a neighborhood of an unstable fixed point is studied.
讨论了不稳定不动点邻域的不稳定轨道的稳定问题。
By using critical point theory, we obtain some sufficient conditions for the existence of multiple periodic solutions to a discrete Hamiltonian system.
本文利用临界点理论,建立了一类离散哈密顿系统存在多个周期解的一些充分条件。
By using a fixed point theorem in cones, we investigate a second-order equation and the theorem of existence of unique positive periodic solution is given.
应用不动点定理,研究了一类二阶时滞微分方程,给出了其唯一周期正解的存在性定理。
By using a fixed point theorem in cones, we investigate a second-order equation and the theorem of existence of unique positive periodic solution is given.
应用不动点定理,研究了一类二阶时滞微分方程,给出了其唯一周期正解的存在性定理。
应用推荐