It is shown that the BP neural network method combined with the amino-acid composition and the biased auto-covariance function features could effectively improve the prediction accuracy.
表明: 基于氨基酸组成和有偏自协方差函数为特征矢量的BP神经网络预测蛋白质二级结构含量的方法可有效提高预测精度。
It is shown that the BP neural network method combined with the amino-acid composition and the biased auto-covariance function features could effectively improve the prediction accuracy.
表明: 基于氨基酸组成和有偏自协方差函数为特征矢量的BP神经网络预测蛋白质二级结构含量的方法可有效提高预测精度。
应用推荐