The finite field arithmetic, elliptic curve scalar multiplication and the related algorithms are investigated in this dissertation.
本文主要研究有限域运算算法和椭圆曲线数乘运算算法。
In these public key cryptographic algorithms, the kernel operations are modular exponentiation of multi-precision integer and elliptic curve scalar multiplication, which both are computing intensive.
这些公钥密码算法的关键操作为大整数模幂乘操作与椭圆曲线标量乘法操作,均属于计算密集型运算。
The fast implementation of elliptic curve cryptosystems relies on the efficient computation of scalar multiplication.
椭圆曲线密码体制的实现速度依赖于曲线上标量乘法的运算速度。
By investigating the elliptic curve cryptosystems, the problems are reduced the fast computations of scalar multiplication of the elliptic curve.
通过对椭圆曲线密码体制的研究,将快速实现椭圆曲线密码的问题归结为标量乘法的实现效率。
The main operations of elliptic curve cryptosystem are scalar multiplication and multi-scalar multiplication for a pair of integers.
椭圆曲线密码体制最主要的运算就是椭圆曲线上的标量乘和多标量乘,在各种密码协议中起到了核心作用。
Using the improved algorithm, we present the attack on elliptic curve cryptosystems with binary scalar multiplication, and verify it through software simulation.
采用改进的算法针对二进制方法点乘的椭圆曲线密码进行了符号变换故障攻击,利用仿真实验进行了验证。
The center to the implementation of elliptic curve cryptosystems efficiently lies in the arithmetic of scalar multiplication and addition.
椭圆曲线密码体制高速实现的关键是点的数乘与加法。
This paper presents a new fast scalar multiplication algorithm on elliptic curve cryptography.
基于椭圆曲线密码,提出了一种快速标量乘算法。
The scalar multiplication in elliptic curves is the basic to elliptic curve cryptosystem.
计算椭圆曲线上点的数乘是椭圆曲线密码算法的基础。
In this dissertation the elliptic curve cryptosystems and fast scalar multiplication algorithms are investigated.
本文主要研究了椭圆曲线公钥密码体制中标量乘法运算的快速算法。
In this dissertation the elliptic curve cryptosystems and fast scalar multiplication algorithms are investigated.
本文主要研究了椭圆曲线公钥密码体制中标量乘法运算的快速算法。
应用推荐