The good localization characteristics of wavelet functions in both time and frequency space allowed hierarchical multi-resolution learning of input-output data mapping.
利用小波变换所具有的良好的时频分析特性,实现了输入输出之间映射关系的多分辨学习。
The good localization characteristics of wavelet functions in both time and frequency space allow hierarchical multi-resolution learning of input-output data mapping.
由于小波变换在时间和频率空间具有良好的定位特性,使小波神经网络可对输入、输出数据进行多分辨的学习训练。
The good localization characteristics of wavelet functions in both time and frequency space allow hierarchical multi-resolution learning of input-output data mapping.
由于小波变换在时间和频率空间具有良好的定位特性,使小波神经网络可对输入、输出数据进行多分辨的学习训练。
应用推荐