This dissertation basically includes the following two studies:First, we calculate the expectations of the Cartesian momentum operator over the wave packet on sphere.
论文中引入了一种特殊的经典波包——矩形波包,计算了笛卡尔坐标、动量以及它们平方的平均值。
This paper discusses the form of mechanical quantity operator and state vector of quantum mechanics under momentum image and coordinate image.
文章通过讨论量子力学力学量算符和态矢量在动量表象和坐标表象下的形式。
The nonequilibrium statistical operator (NSO) of the system is constructed and a series of macroscopic equations for its particle number, momentum, energy, force aad entropy etc. are derived.
构成了此体系的非平衡统计算符,进而导出其粒子数、动量、能量、力和熵等一系列宏观方程。
The unitarity and transformation properties of the operator are analyzed by virtue of completeness of momentum representation.
借助于动量表象的完备性条件,证明了该算符的么正性及其变换特性。
The solution of spherical function is given in the paper, and it is applied reasonably in the problem of eigenvalue of angular momentum square operator.
本文对球函数方程进行了求解,并将球函数方程的解合理地应用于角动量平方算符的本征值问题中。
The radial momentum-position uncertainty relation in equality form of hydrogen atom and hydrogen-like ion is deduced by using the operator theory.
用算符理论推出了氢原子和类氢离子的等式型径向动量-位置不确定关系。
The angular momentum plays vital role in understanding of the atomic and nuclear structure. In quantum mechanics, the ladder operator technique is widely used.
角动量在原子及其核结构中有着非常重要的作用的,而在量子力学中角动量的升降算符有着非常广泛的应用。
The energy levels for three-dimensional coordinate-momentum coupled quantum harmonic oscillators are presented by using invariant eigen-operator method.
利用不变本征算符法给出了坐标-动量耦合的三模耦合量子谐振子的能级信息。
The energy levels for three-dimensional coordinate-momentum coupled quantum harmonic oscillators are presented by using invariant eigen-operator method.
利用不变本征算符法给出了坐标-动量耦合的三模耦合量子谐振子的能级信息。
应用推荐