By researching nilpotent matrix rank, a solution is obtained for general matrix power rank.
通过对幂零矩阵的秩的研究,给出了一般方阵幂的秩的求法。
This article discussed the nilpotent matrix related nature from the matrix different angle.
本文从矩阵的不同角度讨论了幂零矩阵的相关性质。
This paper first presents the definition of nilpotent matrix and then moves on to discuss certain properties of them.
本文先给出幂零矩阵的定义,然后讨论了它的若干性质。
In this paper, we mainly discuss the enumeration problem of the equivalence class of 3-nilpotent matrix defined in normal number fields.
主要对定义在一般数域上的3 -幂零矩阵的相似等价类的个数问题进行探讨。
The nilpotent matrix nature and applies the abstract: The nilpotent matrix is a kind of special matrix, has the vital role in the matrix theory.
幂零矩阵性质及应用摘要:幂零矩阵是一类特殊的矩阵,在矩阵理论中有重要的作用。
The Nature And Application Of Nilpotent Matrix Summary: Nilpotent matrix is a special type of matrix that has an important place in matrix theory.
幂零矩阵性质及应用摘要:幂零矩阵是一类特殊的矩阵,在矩阵理论中有重要的作用。
I analyse some conclusions of spectrum arbitrary and give two sign patterns. then I prove two classes sign pattern matrix that are spectrally arbitrary using Nilpotent-Jacobi method.
分析了谱任意的相关结论并给出了两类符号模式,然后运用幂零雅可比方法证明了两类符号模式矩阵的谱任意性。
It is theoretically important to solve the problems of decomposition of automorphisms of solvable subalgebra and nilpotent subalgebra of matrix algebra over commutative rings.
交换环上矩阵代数的可解子代数和幂零子代数的自同构分解问题是一类重要的具有理论意义的研究课题。
In the chapter 2, the author introduce two methods that method a sign pattern matrix is spectrally arbitrary, the structure method and Nilpotent-Jacobi method with examples.
第二章通过举例介绍了两种证明符号模式矩阵是谱任意的方法——构造法和幂零-雅可比方法。
In the chapter 2, the author introduce two methods that method a sign pattern matrix is spectrally arbitrary, the structure method and Nilpotent-Jacobi method with examples.
第二章通过举例介绍了两种证明符号模式矩阵是谱任意的方法——构造法和幂零-雅可比方法。
应用推荐