Our molecular partition function.
我们的分子配分函数。
In the configurational partition function.
在构型配分函数中。
It's called the canonical partition function.
称为正则配分函数。
So the molecular partition function is labeled little q.
这里分子的配分函数用q标记。
So we're always writing some molecular partition function.
我们总是写下,一些分子的配分函数。
Unnamed objects such as partition function parameters.
未命名对象,如分区函数参数。
So so far, we've written for translation partition function.
我们写过了平动的配分函数。
Q And now we have our capital Q, our canonical configurational partition function.
现在我们有我们的大,我们的正则构型配分函数。
The rotational partition function and thermodynamical properties of hydrogen;
讨论了室温条件下氢的转动配分函数应采用的形式。
so what's our molecular partition function for this configurational degree of freedom?
配分函数是什么,这些构型的?
Partition Function defines the range of values to be stored on different partition.
分区函数定义了位于不同区间的值存储在不同的分区上。
Not only that, again, we could get this directly from the molecular partition function up there.
不仅如此,再一次,我们能配分函数,从上面的分子。
So last time, then, you saw how from the canonical partition function, you could get something like the energy.
上节课我们看到了如何,从正则配分函数导出,内能等量。
Evaluate the partition function as and check that the result agrees with the standard geometric series sum.
估算配分函数为并检查结果与标准的几何级数和一致。
Also notice one of the other results that you've seen is that you could relate the partition function to a, right?
同时要注意你们曾经看到的另一个结果,是你们可以将,配分函数和A关联起来对吗?
And what that means is, in the partition function, which is a sum over all these terms with these Boltzmann factors.
这意味着,配分函数,是带波耳兹曼常数的各项之和。
Like I promised, we're going to be able to derive every thermodynamic quantity if we just know the partition function.
就像我说过的,我就可以计算所有的热力学量,如果我知道了配分函数。
In other words, if I have an expression for Q, I know the partition function, and I can calculate it at any temperature.
换句话说,如果我得到了Q的表达式,知道了配分函数,我可以计算它在任意温度下的数值。
Q And then, big Q, the canonical partition function for the whole system, it's something that we've been through before.
然后,大,整个系统的正则配分函数,这是我们之前探讨过的。
Through this model and using finite temperature field theory, we can write down the partition function of the system.
通过这一模型加上虚时温度场论就可以写出核物质系统的配分函数。
The partition function of flexible cushion on the bottom of explosive holes was proved by experiments before explosion.
爆前试验证明了钻孔底部柔性垫层的隔震作用。
The translational partition function times the vibrational partition function, times the rotational partition function, et cetera.
平动配分函数乘以,振动配分函数,乘以转动配分函数等等。
So it becomes interesting, then, to figure out, how can we write the Helmholtz free energy in terms of the canonical partition function?
这就让我们开始思考,要怎么来表示亥姆霍兹自由能,用正则配分函数?
Changes in Gibbs free energy, changes in the chemical potential. Everything will be related to this partition function. This subsystem.
吉布斯自由能和化学势的变化,一切都,由这个子系统决定。
So now we can just write out the configurational partition function for the molecules and also the canonical partition function for the system.
那么现在我们就能写出,分子构型的配分函数,和系统的正则配分函数。
And then when you look at the system, the system partition function can also be separated into a translation and the configuration for the system.
再考虑整个系统,它也可以分解成,平动和构型部分。
The grand partition function of intermediate statistics with a standard method is derived to calculate the thermodynamic properties of an ideal free-particle model.
利用现行标准的统计力学方法推导出中间统计的巨配分函数,得到了服从中间统计的理想自由粒子模型的热力学函数。
In statistical physics lectures, the calculation of the configuration partition function of molecule is simplified from double vectors integral to single vector integral.
统计物理教材中分子构型配分函数的计算,一般是将双矢量积分化简为单矢量积分。
In this article, a different view and suggestion are given about hydrogen molecular partition function in teaching material of the thermodynamics and statistical physics.
该文就热力学统计物理教材中仲氢分子配分函数的表达式提出了不同看法,并给出了修改建议。
In this article, a different view and suggestion are given about hydrogen molecular partition function in teaching material of the thermodynamics and statistical physics.
该文就热力学统计物理教材中仲氢分子配分函数的表达式提出了不同看法,并给出了修改建议。
应用推荐