Other potential avenues, such as loop quantum gravity, are also proving untidy.
另外一个有点看头的“圈量子引力”,也还是乱糟糟。
Loop quantum gravity can be visualised, as its name suggests, as a mesh of loops.
顾名思义,环圈量子重力可以想象成一个由环组成的网。
On such bases, quantum gravity changes the epistemological basis of physics.
在此基础上的量子引力改变了物理学的认识论基础。
Reconciling the two, creating a theory of quantum gravity, is the holy grail of modern physics.
融合两者,我们创造出了量子引力理论,它是当代物理学的核心。
His calculations relied on assumptions about the physics of ultra-high energies and quantum gravity.
他的计算结果是根据超高能量和量子引力物理学的假设。
But complex calculations by Ashtekar's team show that singularities are not allowed by quantum gravity.
但阿贝·阿西提卡团队的进一步计算表明量子引力不允许奇点的存在。
Quantum gravity theory and quantum cosmology are simply reviewed and their logical relations are discussed.
本文对量子引力理论和量子宇宙学作了简单述评,讨论了两者之间的逻辑关系。
One of the great concerns of modern physics is to marry these two concepts into a single theory of quantum gravity.
现代物理学最关心的问题之一就是将这两个理论用量子引力统一起来。
Loop quantum gravity, as this rival is known, was dreamed up in 1986 by Abhay Ashtekar, of Pennsylvania State University.
这个超弦理论的对头叫做“环圈量子重力学”,于1986年由宾西法尼亚州立大学的Abhaya shtekar提出。
Other theories of quantum gravity, including string theory and loop quantum gravity, are far more difficult for newcomers to embrace.
量子引力的其它理论,包括弦论和圈量子引力,对新人来说都更难以涉足其中。
A new model such as the causal evolution model of spin networks is needed to describe a dynamics process of loop quantum gravity.
还将这种方法与缠结理论做了比较;要描述圈量子引力的动力学过程,需要新的模型,自旋接网圈的因果演化模型就是其中的一种。
String theory, one route to quantum gravity, gives an unsatisfactorily vague answer: space can have anything from zero to 10 dimensions.
弦理论,它作为一条通向量子引力的道路,对上述的这个问题,只是提供了一个含糊不清的答案,不能使人满意:空间,既然可以从零维到10维。
Indeed, theorists working on loop quantum gravity think that matter itself is merely the result of twisting and braiding ribbons of space-time.
事实上,研究环圈量子重力学的理论学家认为,物质本身不过是时空纽带扭曲缠绕而成的编织物。
What happens to matter as it gets squished together at the singularity depends on the details of quantum gravity, which are as yet unknown.
物质在奇异点被压扁时发生了什么事,取决于量子重力理论的细节,这理论目前尚不清楚。
To be fair, however, m theory does take one important step toward unification by removing the infinities that plagued earlier theories of quantum gravity.
公平的说,M理论的确在大统一理论方面作出了重要的进步,那就是它没有早期量子引力论中灾难性的无穷量。
"These uncertainties are additional parameters that apply when you put a system into a quantum context such as a theory of quantum gravity," Bojowald said.
波究瓦德说,“当你将一个系统放入量子理论,比如量子引力理论中时这些不确定性就成为了附加参数。”这与量子物理学中的不确定关系相似。
Black hole, as a hot topic in quantum gravity and quantum cosmology, is recognized as a bridge that connects quantum mechanics and general relativity.
黑洞作为量子引力和宇宙学一个研究的热点,它是联系广义相对论与量子力学的纽带。
Hogan agrees that if the holographic principle is confirmed, it rules out all approaches to quantum gravity that do not incorporate the holographic principle.
霍根赞同说,一旦全息原理得到验证,它将排除那些不包含全息原理的量子引力方法。
The basic unified theory comprises of quantum gravity, quantum weak force, quantum electromagnetic force, quantum strong force and the super-unified theory.
基本统一论由量子引力理论、量子弱力理论、量子电磁理论、量子强力理论和超统一理论组成。
The remarkable about-face is the result of Hawking's attempts to combine quantum theory with general relativity in a powerful new theory of quantum gravity.
惊人的后悔是霍金的尝试的结果在一个量重力的强有力的新理论里把广义相对论与量子理论结合起来。
So far it seems to be working: the infinities that plague other theories of quantum gravity have been tamed, and the theory spits out a well-behaved graviton.
这套理论目前看来还算凑效:第一、困扰其它种种量子引力理论的“无限解”症结终于得到缓解; 第二、自然而然衍生出一个“驯服”的引力子。
Today the most popular approach to quantum gravity is string theory, which researchers hope could describe happenings in the universe at the most fundamental level.
目前研究量子引力最常用的方法是超弦理论,研究人员希望它能描述宇宙在最基本层面上的活动。
A diatropic contextual analysis indicates the actual contexts in which quantum gravity theory is proposed and the importance of explanatory contextual choices.
量子引力时空理论的横断语境分析,显示了量子引力理论提出的现实语境和对其进行求解的语境选择所具有的重要意义。
A diatropic contextual analysis indicates the actual contexts in which quantum gravity theory is proposed and the importance of explanatory contextual choices.
量子引力时空理论的横断语境分析,显示了量子引力理论提出的现实语境和对其进行求解的语境选择所具有的重要意义。
应用推荐