Using latent semantic analysis to extract feature, the affect of synonymy and polysemy in text representation process is eliminated and the dimension of text vector is reduced.
利用潜在语义分析进行特征抽取,消除多义词和同义词在文本表示时造成的偏差,并实现文本向量的降维。
The thesis presents a semantic vector algorithm, builds up the network of image semantic keywords, and realizes the composite retrieval of the image low-level feature and semantics characteristics.
提出了一种语义向量算法,构建了图像语义关键词网络,实现了图像底层视觉特征和语义的复合索引。
The thesis presents a semantic vector algorithm, builds up the network of image semantic keywords, and realizes the composite retrieval of the image low-level feature and semantics characteristics.
提出了一种语义向量算法,构建了图像语义关键词网络,实现了图像底层视觉特征和语义的复合索引。
应用推荐