State estimation of singular discrete-time linear systems is discussed.
讨论了线性离散奇异系统的状态估计问题。
After performing Kalman filter, the optimal state estimation can be obtained.
进行卡尔曼滤波后,可以获得系统状态最优估计值。
This paper presents an algorithm for dynamic state estimation of power systems.
本文介绍了一种电力系统动态状态估计的算法。
A new fast decoupled state estimation method is presented for distribution systems.
本文提出了一种新的快速解耦配电网状态估计算法。
By introducing state transformation, a reduced-order state estimation form is achieved.
通过引入状态变换,得到了一类降阶形式的状态估计问题。
The extended state estimation method is used to estimate the transmission line parameters.
引入了增广状态估计方法估计线路参数。
The state estimation error is proved to asymptotically approach zero with the Lyapunov method.
基于李亚普诺夫方法,证明了状态估计误差渐近稳定且渐近收敛到零。
A method of adaptive output feedback control is studied which does not rely on state estimation.
研究了一种不依赖状态估计的自适应输出反馈控制方法。
Its functions include: network topology, state estimation, bus load forecast and state monitor etc.
该软件具有:网络结线分析、状态估计、母线负荷预测和网络状态监视等功能。
The exchange of two nonlinear Kalman filters was used to improve the fusion accuracy in the state estimation.
在作状态估计时,采用两组非线性卡尔曼滤波切换提高融合精度。
On the basis of state estimation based on PMU in possession, a new model of state estimation is presented in this paper.
在现有基于PMU的状态估计模型的基础上,提出了新的基于PMU的状态估计模型。
The problem about bad data detection and identification in distribution system state estimation is focused in this thesis.
本文着重分析了配电网状态估计中的不良数据检测与辨识的问题。
Multi-sensor information fusion state estimation problem for descriptor discrete-time stochastic linear systems is studied.
研究了广义离散随机线性系统的多传感器信息融合状态估计问题。
Satisfactory results were achieved by using the extended Kalman filtering iterative algorithm for on-line state estimation.
用推广卡尔曼滤波迭代算法进行状态实时估计取得令人满意的结果。
Signal estimation can be a special form of state estimation, such as ARMA signal being estimated as the component of a state.
信号估计可作为状态估计的一种特殊形式,例如ARMA信号估计可转化成一个状态分量的估计问题。
Radial Gaussian function networks based on fuzzy systems is applied to the state estimation of nonlinear time varying systems.
利用模糊系统的径向高斯函数网络对一类非线性时变系统的状态进行了估计。
A new observability analysis algorithm for power system state estimation based on reduced network Jacobian matrix is proposed.
提出了一种新的基于降阶网络雅可比矩阵的电力系统状态估计可观测性分析方法。
Therefore, state estimation algorithm based on the measurement transformation of the equivalent current is studied in this paper.
因此,本文对基于等效电流量测变换的电力系统状态估计算法进行了研究分析。
Present status of the distribution system state estimation, and methods of bad data detection and identification are surveyed here.
并对配电网状态估计的研究现状和常用不良数据的检测与辨识方法进行了描述。
This paper presents the effect of the common process noise on track statistical distance and performance of state estimation fusion.
本文研究动态系统过程噪声对航迹统计距离和状态融合估计性能的影响。
On the other hand, state estimation plays an important role in systems and control theory, signal processing and information fusion.
另一方面,状态估计问题在系统与控制理论、信号处理与信息融合中有很重要的应用。
The problem of multi-sensor information fusion state estimation for descriptor discrete-time stochastic linear systems is considered.
考虑了广义离散随机线性系统的多传感器信息融合状态估计问题。
The Successive Orthogonalization Decentralized Kalman Filter (SODKF ) is a new method which is used for large system state estimation.
逐次正交化分布式卡尔曼滤波器是对大系统进行状态估计的一种新方法。
On the basis of mathematical description for least square (LS) estimation, an iterative equation for LS state estimation is established.
在对最小二乘(LS)估计进行数学描述的基础上,建立了一种LS状态估计的迭代方程。
The application fields include oil seismic exploration, communication, radar tracking, signal processing and state estimation, and so forth.
应用领域包括油田地震勘探、通讯、雷达跟踪、信号处理和状态估计等。
Power system state estimation is the core of electric energy management system and the bases of dispatch, control, security evaluation and so on.
电力系统状态估计是电力系统调度、控制、安全评估等方面的基础,也是电能管理系统的核心组成部分。
In this paper, based on output residuals, an efficient adaptive state estimation approach is presented for linear time-invariant discrete system.
本文针对线性定常离散系统提出了一种有效的基于输出残差的自适应状态估计方法。
The method of state estimation is discussed, when radars have different observation dimension in one distributed data fusion system with feedback.
论述了带反馈分布式信息融合系统中传感器观测维数不同时的状态估计方法。
In the process of state estimation, AC and DC equations are solved in turn, keeping all high order derivatives of Taylor series for the DC equation.
在估计过程中交直流方程交替求解,并对直流方程采用保留泰勒级数展开式中所有高阶项的方法。
In the process of state estimation, AC and DC equations are solved in turn, keeping all high order derivatives of Taylor series for the DC equation.
在估计过程中交直流方程交替求解,并对直流方程采用保留泰勒级数展开式中所有高阶项的方法。
应用推荐