The basic statistical learning theory (SLT) and its corresponding algorithms, support vector machines (SVMs), are surveyed, and especially, its latest research results are summarized and studied.
为了系统地归纳统计学习理论与支持向量机的基本思想和算法,总结目前该领域的最新研究成果。
Support vector machine (SVM) is a novel and powerful learning method which is derived based on statistical learning theory (SLT) and the structural risk minimization principle.
建立在统计学习理论基础之上的支持向量机(SVM),是一种基于结构风险最小的小样本机器学习方法。
Support Vector Machines(SVM) are developed from the theory of limited samples Statistical Learning Theory (SLT) by Vapnik et al. , which are originally designed for binary classification.
支持向量机(SVM)是建立在统计学习理论基础上的一种小样本机器学习方法,用于解决二分类问题。
Based on statistical learning theory (SLT), the relevant problems of solving the machinery intelligent diagnosis and condition prediction are thoroughly researched in this project by means of SVM.
本项目以统计学习理论为基础,深入研究了应用支持向量机方法解决机械智能诊断和状态预测的相关问题。
SVM is a novel powerful machine learning method developed in the framework of Statistical Learning Theory (SLT).
支持向量机是在统计学习理论基础上开发出来的一种新的、非常有效的机器学习方法。
Support Vector Machine (SVM) is used as the implementation basis, which is a tool of Statistical Learning Theory (SLT).
在探索手写字符识别的方法上采用了统计学习理论,利用支撑向量机SVM作为基本的识别工具。
This dissertation firstly describes the theoretical bases of SVM-statistical learning theory (SLT).
支持向量机是基于统计学习理论的新一代机器学习技术。
This dissertation firstly describes the theoretical bases of SVM-statistical learning theory (SLT).
支持向量机是基于统计学习理论的新一代机器学习技术。
应用推荐