The set of non-Wandering Points is one of the most important set of points in the topological dynamical system.
要使市集模式运行起来,你至少有一点点让人们喜欢你的本领是非常重要的。
In Chapter One, we introduce briefly the historic background and notions of topological dynamical system and some known results about topological entropy.
在第一章中,我们简单地介绍拓扑动力系统的历史背景和基本概念,以及拓扑熵方面的一些已知结果。
The paper presents a necessary and sufficient condition for topological dynamical system to be topologically conjugate with a generalized symbolic dynamical system.
本文证明了,拓扑动力系统与广义符号动力系统拓扑共轭的一个充分必要条件。
Roughly speaking, dynamical systems consist of differential dynamical system, topological dynamical system, infinite dimensional dynamical system, complex dynamical system and ergodic theory etc.
今天的动力系统大致可分为微分动力系统、拓扑动力系统、无穷维动力系统、复动力系统、遍历论等方向。
In this paper, we study weakly chaos on sub-shift of symbol dynamical system, and give a weakly chaotic sub-shift whose topological entropy is zero.
本文讨论了符号动力系统子移位的弱混沌,并得到拓扑熵为零的弱混沌子移位。
In this paper, we study weakly chaos on sub-shift of symbol dynamical system, and give a weakly chaotic sub-shift whose topological entropy is zero.
本文讨论了符号动力系统子移位的弱混沌,并得到拓扑熵为零的弱混沌子移位。
应用推荐