如果我们计算气体混合过程中熵的变化,我们会发现这个量是正的。
If we calculate the change in entropy during gas mixing, we will find that this quantity is positive.
提出了基于最大互信息熵且具有奇数约束的优化得分函数。
A score function for optimization based on maximum mutual information entropy with odditional restriction is proposed.
这些的基本原因都是熵的混合。
所有这些都是由混合熵引起的。
当混合a和,有同样的混合熵。
B So when you mix a and B, you're going to have the same entropy of mixing.
它们在你们关于熵的笔记中。
因为我们得到的是所有这些混合的熵。
Because you've got entropy of mixing happening in all of this.
关于这些熵驱动的例子有什么问题吗?
只有熵在驱动这个混合过程。
这样我们能更明确地,计算混合后的熵。
没有混合熵,我们得到的就是这条曲线。
Without entropy of mixing, we would be sitting on this curve here.
对吗?体系是不是倾向于具有更多的熵?
体积发生变化,然后看熵如何发生变化。
The volume is going to change, and we can see how the entropy changes.
但是熵会导致初始状态,和末状态下降。
But the entropy of mixing is causing my initial state and my final state to go down.
没有反应物和生成物的熵。
The entropy of mixing of reactants and products wasn't there.
那就是我们混合物的熵。
熵是指物体失序的趋势。
我们要研究,熵,热机,卡洛循环等概念。
We're building up to entropy and to engines, Carnot cycles, etcetera.
没有混合熵的话,所有的东西都会变成产物。
Without entropy of mixing, then everything would go directly to the products.
这就是熵和时间之箭。
继续得到宏观的熵变。
但是熵也会起作用。
最后,还有其它一些东西,但熵是非常重要的。
Ultimately. And other things, but entropy is very important.
这告诉我们当温度变化时,如何得到熵的数值。
So that tells us what to do to know the entropy as the temperature changes.
这就是由于你的搜索引发的熵,也就是无序状态。
特别地,为什么熵的混合,对于平衡态如此重要。
Specifically, how entropy of mixing really becomes key to equilibrium.
前面提到过,即使计划得最好的架构也会出现熵。
As I mentioned earlier, entropy has a way of working itself into even the most well-planned architectures.
现在为了权宜而做的折衷将导致软件中的熵不断增大。
Compromises made now for the sake of expediency cause entropy to build up in your software.
因为混合熵。
因为混合熵。
应用推荐