主要讨论了第二积分中值定理“中值点”的渐近性和渐近速度。
This paper discusses the asymptotic rate of "mean value point" in second mean value theorem for integrals.
最后,结合拉格朗日微分中值定理改进了积分中值定理的条件和结论。
Finally, the condition and result of integral mean-value theorem are also improved combined with the Lagrange mean value theorem of differentials.
对曲面积分中值定理,给出了一个新的证明,并举出相关例子加以应用。
In this paper, a new proving of the mean value theorem of integral on surface is given, with some application in related cases presented.
文中还根据积分中值定理证明了应用概率积分法求得的下沉等值线是椭圆形或圆形。
According to the theorem of integral mean value it is proved in this paper that by means of probability integral the subsidence equivalent curve is a circle or a ellipse.
讨论了第一类曲线积分中值定理“中间点”的渐近性质,得到了更具一般性的新结果。
This paper is devoted to studying the asymptotic behavior of the intermediate point in the mean value theorem for first form curve integrals. A general result is obtained.
本文依据积分中值定理给出了适宜于实验计算的积分平均值的近似公式,并举例加以说明。
This paper gives some approximate formulas of the integral average value for experimental calculation on the basis of the integral mean law. Examples are given for explanation.
在证明了定积分不等式等性质的基础上,给出并证明了积分中值定理的中值在开区间内取得的结论。
Based on the integral inequality and other quality proved, the paper discusses the conclusion of the mid-value in theorem of integration mean which is got in open interval.
给出了拉格朗日微分中值定理和第一积分中值定理中值点的渐进性的更一般性的结果及其简洁证明。
Gives more general results on the gradualness of the median point of Lagranges median theorem and first median theorem for integrals and its succinct proof.
给出了积分中值定理的一个注记,证明了中值点的存在性与覆盖中值点的区间的存在性是相互对应的。
By increasing the condition of the integral mean value theorem, we prove that the existence of intermediate point and the existence of interval are corresponding to each other.
讨论了积分中值定理中间点的单调性、连续性、可导性,给出了一组充分条件,并证明了三个相关定理。
The continuity and derivative of the intermediate point in the Taylor mean value theorem are discussed, and some of their sufficient conditions are presented.
对积分中值定理中间点的渐近性进行研究,给出了推广的积分第一中值定理的中间点的渐近性的一个公式。
This paper presents a generalization of mean value theorem for integrals and discusses the asymptotic properties of mean value of mean value theorem for integral.
文章研究了第一型曲线积分中值定理“中间点”的渐近性,获得了一些重要结果,得出它也是定积分中值定理相应结果的推广。
This paper discusses the asymptotic property of the Mid-point of the mean theorem for first form curvilinear integral.
针对辐射网络电能量的计算与分析问题,依据积分中值定理提出了电流矩中值的概念,形成了电流矩中值潮流模型,证明了电流矩中值形式的电能量损失定理。
This theorem transfers the problem of energy-based, time-oriented integrals into that of the median current moment, which lays the foundation of network loss calculation based on electricity energy.
本文就积分第一中值定理给出了一个简单的证明。
This paper gives a simple proof of the first mid -value theorem of Integral.
本文利用定积分的性质、微分中值定理、施瓦兹不等式、二重积分等内容,研究了积分不等式的四种证法。
This article explores the four ways for solving integral inequality with the nature of definite integral, mean value theorem of differentials, Schwarz inequality and double integral.
本文建立了两类可积函数的积分第一中值定理的推广形式,推广了已有结论。
Two kinds of generalizations of the first mean value theorem of integral for integrable functions with different properties are established in the paper, the results extend the previous conclusions.
本文把复变函数的围道积分应用于泛函分析,对一般的线性闭算子得到了算子值函数的中值定理。
In this paper, the author USES the contour integral in analytic function to functional analysis, and obtains the mean value theorem of operator-valued functions.
给出并证明了关于积分第二中值定理“中间点”的渐近性定理。
In this article, the author has proved the theorem of "middle point" in the second integral mean value.
本文利用积分上限函数给出证明中值定理及类似问题的一种方法。
This paper applies an integral upper limit functions to giving a method for the solution of the problems similar to those as the proven mean value theorem.
本文利用切比雪夫积分不等式和微分中值定理,对所谓的双参数拓广平均的单调递增性给出一种简单的证明。
In the article, a simple and elementary proof of monotonicity is given for the so-called extended mean values using Tchebycheff s integral inequality and the mean-value theorem for differential.
本文将微积分中的罗尔定理从有限闭区间推广到了半无限区间和无限区间,有助于对罗尔中值定理的理解。
The author generalizes the theorem of Rolle in the calculus from closed interval to semi-infinite interval and infinite interval , which is useful for students to understand theorem of Rolle better.
给出了在各种情况下积分第二中值定理“中间点”的渐近性的几个结论,相信在积分学中有着很重要的作用。
In this paper, second mean value theorem for integrals is studied, and some results of the inverse problem of the theorem are obtained.
对积分第二中值定理作了进一步的研究,得到了积分第二中值定理的逆问题及其逆问题的渐进性。
This paper intends to discuss and prove the asymptotic behaviour of mean point in second mean value theorem for integrals in concessional terms.
研究积分第一中值定理,获得了其中值 渐近性的一个新结果。
Study about the first mean value theorem for integrals, which obtain a new results on the mean value asymptotic behavior.
研究积分第一中值定理,获得了其中值 渐近性的一个新结果。
Study about the first mean value theorem for integrals, which obtain a new results on the mean value asymptotic behavior.
应用推荐