将最小二乘支持向量机(least square support vector machine,LS-SVM)应用于航空发动机气路故障诊断。首先,分析了用于气路故障诊断的巡航偏差数 .
基于1个网页-相关网页
将最小二乘支持向量机引入到小字符集压印字符识别中。
This paper presents an application of least squares support vector machines in small-set pressed protuberant character recognition.
将最小二乘支持向量机(LS - SVM)应用于飞机襟翼状态趋势研究。
Least square support vector machine (LS-SVM) is used to predict the trend of the aircraft flap system.
首次尝试将最小二乘支持向量机技术用于土壤侵蚀预测,并与BP神经网络的方法进行了对比,取得了较好的预测精度。
This paper try to predict soil erosion with the Least Square support vector machine technology and the better predict precision compared to the BP artificial neural network has been gotten.
应用推荐