在概率论和统计学中,一个离散性随机变量的数学期望值(或数学期望、或均值,亦简称期望,物理学中称为期待值)是试验中每次可能的结果乘以其结果概率的总和。
火力强度模型则通过以特定兵力密度分布在本区一分钟内抗击饱和进袭的敌空袭兵器的数学期望值建立。
The fire intensity model is built by the mathematic expectation that the forces that are arrayed in given distribution density attack the saturation air attack forces in a minute.
提供了一个在数学期望值不相等条件下进行概率分析的新方法,该方法采用所谓标准差系数作为分析指标。
Using the standard deviation coefficient as analysis target, the author provides a new probability analysis method, in case the mathematical expectations are different.
应用推荐