有理数集,即由所有有理数所构成的集合,用黑体字母Q表示。有理数集是实数集的子集 有理数集是一个无穷集,不存在最大值或最小值。
...记作 N Z :全体整数组成的集合,即整数集(set of integer) Q :全体有理数组成的集合,即有理数集(rational numbers set) R :全体实数组成的集合,即实数集(set of real numbers) :不含元素的集合,即空集(empty set) 注意: N N Z Z Q Q R R...
基于12个网页-相关网页
... 何谓有理数 rational numbers or quotients 有理数集 the set of rational numbers 有理数式 rational expression ...
基于12个网页-相关网页
... 有理数域:rational number field 有理数集:rationual number assemblage 有理式;有理数式:rational expression ...
基于6个网页-相关网页
... 整数集the set of all integers 有理数集the set of all rational numbers 实数集the set of all real numbers ...
基于2个网页-相关网页
因此说有理数集是一个有序的域。 序公理 。 因此说有理数集是一个有序的域 。
For this reason, we say that the set of rational numbers is an ordered field.
在数集的基础上,在整数域上建立了一个新的交换半群,并在有理数域、实数域和复数域上进行了推广;作为应用,讨论了其元素的表示形式。
Based on the number set, a new commutative semi-group is established in the integer number and extended in number fields of rational number, real number and the complex number.
一维空间的不可测集的构造方法基本相同,本文通过将二维空间里的点其对应坐标为有理数的划分方法来确定亲和集,进而给出了一个二维的不可测集。
We know the structure way of the one-dimension no-measurable set, in this paper we first define a amicable set using a mapping, then we give a two-dimension non-measurable set.
应用推荐