这个方程的解在数学上一般并不唯一,文献[1]提出的粘性解(viscosity solution)是唯一与实际相符合的解,也是数值方法所要寻求的解.这种粘性解是Lipschitz连续的,但解的导数可能有间断,不管初值如有多光滑.
基于2512个网页-相关网页
受约束的粘性解 constrained viscosity solution
粘性守恒律解的稳定性 Stability of Solutions for Viscous Conservation Laws
粘弹性解析 viscous-elasticity analytical
Also, the result we got in this Chapter including many significant results, especially the one in Chapter two. At the same time we proved independently the existence of the viscosity solution to this problem.
而所得的结果包含了许多具体的有意义的问题,特别是包含了第二章,同时我们独立地给出了粘性解存在性的证明。
参考来源 - 非线性退化抛物型方程解的存在性与正则性Through the dynamic programming approach and the Girsanov change of measure, we characterize the value function as the unique viscosity solution of a linear parabolic partial differential equation and obtain the Feynman-Kac representation of the value function.
利用动态规划原则以及Girsanov变换方法,我们得到最优值函数是一线性抛物偏微分方程的唯一粘性解。
参考来源 - 马氏调节过程在保险与金融中的应用·2,447,543篇论文数据,部分数据来源于NoteExpress
证明了与随机控制问题有关的动态规划方程粘性解的比较定理。
This paper gives a proof of a comparison theorem on the viscosity solution of HJB Equation.
为了处理超临界流和有冲波情况,我们在方程中引入人工粘性项,以消除解中可能出现的不连续性。
An artificial viscous term is introduced in the equation to treat the supercritical flow with embeded shock waves and to eliminate the discontinuous solution.
因此,粘性守恒律方程组整体解的大时间性态成为人们十分关心的问题。
Therefore, the large time behavior of the global solution to viscous conservation laws has become one of the most important topics in fluid dynamics.
应用推荐