罗尔(Rolle)中值定理是微分学中一条重要的定理,是三大微分中值定理之一,其他两个分别为:拉格朗日(Lagrange)中值定理、柯西(Cauchy)中值定理。 罗尔定理描述如下: 如果 R 上的函数 f(x) 满足以下条件:(1)在闭区间 [a,b] 上连续,(2)在开区间 (a,b) 内可导,(3)f(a)=f(b),则至少存在一个 ξ∈(a,b),使得 f'(ξ)=0。
... 罗德里格斯法则||Rodrigues ruler 罗尔中值定理||Rolle mean value theorem 罗森布罗克函数||Rosenbrock function ...
基于6个网页-相关网页
在此基础上通过构造区间套依次证明了罗尔中值定理、拉格朗日中值定理和柯西中值定理。
On the basis of these theories, Rolle mean value theorem, Lagrange mean value theorem and Cauchy mean value theorem are proved by constructing nested interval.
其证明方法关键在于构造一个辅助函数,再应用罗尔中值定理推出拉格朗日中值定理的结论。
Its key proof is to construct an auxiliary function, which is used by Roll's theorem to reach a conclusion of Lagrange's theorem.
本文将微积分中的罗尔定理从有限闭区间推广到了半无限区间和无限区间,有助于对罗尔中值定理的理解。
The author generalizes the theorem of Rolle in the calculus from closed interval to semi-infinite interval and infinite interval , which is useful for students to understand theorem of Rolle better.
应用推荐