L1范数优化是与L0范数优化最接近的凸优化问题(convex optimization problem),并且相关研究发现,当得到的表示足够稀疏时,L0范数与L1等价。
基于20个网页-相关网页
Furthermore, a convex optimization problem with LMI constraints is formulated to design the optimal guaranteed cost controllers.
通过求解一个线性矩阵不等式约束的凸优化问题,提出了最优化保性能控制律的设计方法。
In convex programming theory, a constrained optimization problem, by KT conditions, is usually converted into a mixed nonlinear complementarity problem.
在凸规划理论中,通过KT条件,往往将约束最优化问题归结为一个混合互补问题来求解。
The problem is reduced to a linear convex optimization algorithm via LMI approach.
采用线性矩阵不等式方法,将问题转化为一个线性凸优化算法。
应用推荐