④ 微分时间(Derivative Time):如果丌想要微分回路,可把微分时间设为0。 ⑤ 采样时间(Sample Time):是PID控制回路对反馈采样和重新计算输出值的时间间隔。
基于307个网页-相关网页
derivative time constant 微分时间常数
time derivative 时间导数 ; 时间微商 ; [计] 按时间导数
derivative action time 微分作用时间 ; 微分酌时间 ; 微商酌时间
first time derivative 一阶时间导数 ; 一次微商心室最大压力随时间变化率
second time derivative 二阶时间导数
derivative-action time constant [自] 微商作用时间常数
the time derivative 时间导数
我会计算时间导数。
And so I can substitute that in there, and so I get that the power is the derivative of this versus time.
所以我可以代入这里,得到那个功率,是相对时间的衍生物。
So, the velocity vector is the derivative of a position vector with respect to time.
速度向量,是位置向量关于时间的导数。
If you took the derivative of this, you will get the velocity at time t, it would be: v=v0+at.
如果你对它求导,你就可以知道 t 时刻的速度,即,v=v0+at
And the mathematics of that equation involved a double derivative in time of x 0 plus some constant times x equals zero with some constraints on it.
那个数学方程式,包括了x对时间的二阶导数,加上常数乘以x等于,还有一些限制条件。
If you want to know how fast it's moving at a given time, if you want to know the velocity, I just take the derivative of this answer, which is 10-10t.
如果你想知道它在给定时刻的运动有多快,如果你想知道它的速度,我只要对这个式子求导,得到10-10t
应用推荐