分析研究的对象很多,包括导数(derivatives),积分(integral),微分方程(differential equation),还有级数(infinite series)——这些基本的概念,在初等的微积分里面都有介绍。
基于10个网页-相关网页
partial differential equation 偏微分方程式 ; 偏微分方程数值解 ; 微分方程
stochastic differential equation [数] 随机微分方程 ; 随机微分方程式
exact differential equation 全微分方程 ; [数] 恰当微分方程 ; 正合微分方程 ; 正合微分方程式
delay differential equation 滞后微分方程
integro-differential equation [数] 积分微分方程
Bernoulli differential equation 伯努利微分方程
hyperbolic partial differential equation 双曲型偏微分方程
elliptic partial differential equation [数] 椭圆型偏微分方程 ; 偏微分方程 ; 椭圆型
ordinary differential equation [数] 常微分方程
To solve the differential equation, fourth-order Runge-Kutta method is a good candidate for obtaining the dynamic cloth shape in 3D space.
本文采用了四阶龙格-库塔法对微分方程进行求解,获得了织物在三维空间中的运动形态。
参考来源 - 织物动感模拟的算法研究与实现Convergence condition of PSO is obtained through solving and analyzing the differential equation.
运用差分方程对粒子速度变化过程和位置变化过程进行分析,得到了粒子群算法的收敛条件。
参考来源 - 惯性权重正弦调整的粒子群算法In chapterⅡ,the simplest stock differential equation is introduced .
第二章介绍了最简单的股票微分方程,并且用微分方程定性理论对其进行了研究,其结果是符合股票市场的交易规律的。
参考来源 - 股票市场供求关系与股价及其变化率的微分方程 (研究生论文)·2,447,543篇论文数据,部分数据来源于NoteExpress
N an equation containing differentials or derivatives of a function of one independent variable. A partial differential equation results from a function of more than one variable 微分方程
这是个微分方程。
So we have a differential equation.
得到一个微分方程。
We've we've written a differential equation here.
我们已经写出了一个微分方程。
So here I've written for the hydrogen atom that deceptively simple form of the Schrodinger equation, where we don't actually write out the Hamiltonian operator, but you remember that's a series of second derivatives, so we have a differential equation that were actually dealing with.
这里我写出了,氢原子薛定谔方程的,最简单形式,这里我们实际上,没有写出哈密顿算符,但是请记住那你有,一系列的二次导数,所有我们实际上会处理一个微分方程。
Not only did he formulate laws of gravitation, he also invented calculus and he also learned how to solve the differential equation for calculus.
他不仅找出了引力定律的公式,还发明了微积分,同时也得出了微分方程的解法
You won't have to solve it in this class, you can wait till you get to 18.03 to start solving these types of differential equations, and hopefully, you'll all want the pleasure of actually solving the Schrodinger equation at some point. So, just keep taking chemistry, 18 03 you'll already have had 18.03 by that point and you'll have the opportunity to do that.
你们不用在课堂上就解它,你们可以等到得到18,03之后,再开始解这些类型的微分方程,希望你们都想得到,实际解薛定谔方程的乐趣,所以,保持来上化学课,你们在那个点将会得到,你们有机会做到的。
应用推荐