In contrast, if he infers that she is not interested when she is in fact interested, then he has made an error of false negative (what the statisticians call the "Type II" error).
相反,如果他推断,她不感兴趣,而实际上她感兴趣,那么他犯了假阴性的错误(统计学家称为“第二类”错误)。
So we make two types of errors: a type I error, or false positive, is believing a pattern is real when it is not; a type II error, or false negative, is not believing a pattern is real when it is.
因此我们常犯两类错误:第一类,是虚假的肯定,当原型并不存在时它认为原型是真的;第二类,是虚假的否定,当原型存在时它却认为原型是虚假的。
Causes of the two types of errors and how to control type II error are discussed and solution is proposed for reference.
本文对于两类错误的成因以及如何控制第二类错误进行了探讨,希望对于第二类错误的控制提出一些解决的方法。
应用推荐