Financial time series has high randomicity and nonlinearity. Neural network is quite suitable in the process of financial time series data for its good ability of nonlinear mapping and generalization.
金融时间序列具有很强的随机性和非线性性,而神经网络具有良好的非线性映射能力及自适应、自学习和良好的泛化能力,因此非常适合处理金融时间序列这样的数据。
Because these models can reflect the feature of the financial market well, they have been widely applied in the time series analysis on financial data.
由于该模型被认为是最集中反映了金融市场数据方差变化的特点而被广泛应用于金融数据时间序列分析中。
Data mining are used to analyze the foreign exchange rate time series and acquire the correct, implicated and hidden information, which has practical significance in the financial field.
利用数据挖掘技术分析外汇汇率时间序列,从时间序列中获得正确的、隐含的、潜在的信息对于金融领域研究具有重要的现实意义。
应用推荐