分形布朗运动(Fractional Brownian Motion)是由Manderbrot和、Van Ness于1968年提出的一种统计自相似过程的数学模型,是常见的描绘自然现象和物体过程的一种信号模型,主要...
基于102个网页-相关网页
Fractional Brownian Motion Model 布朗运动模型 ; 分式布朗运动模型
local fractional brownian motion 局部分式brown运动
generalized fractional Brownian motion 广义分数布朗运动
mixed fractional Brownian motion 混合型分数布朗运动
fractional brownian motion fbm 分形布朗运动
accerated fractional brownian motion 加速分数型布朗运动
geometric fractional Brownian motion 几何分数布朗运动
d-dimensional fractional Brownian motion d维分数Brown运动
In Chapter 5, we discuss Fractional Brownian Motion and graphics rendering technology based on fractal and give the improved method.
第五章讨论了分形布朗运动和基于分形的图形生成技术,给出了改进的方法及实现。
参考来源 - 模拟飞行器的虚拟实现·2,447,543篇论文数据,部分数据来源于NoteExpress
以上来源于: WordNet
The phenomena of fractional Brownian motion and anomalous diffusion and their descriptive ways in the mathematics are reviewed and discussed.
本文评述了分数布朗运动和反常扩散现象及描写它们的几种数学方式。
Fractional Gaussian Noise (FGN) is the increment process of fractional Brownian motion, they are widely used in modelling self-similar process.
分形高斯噪声fgn是分形布朗运动的增量过程,广泛应用于自相似过程的建模分析。
In fact, the fractional Brownian motion has already been successfully applied to hydrology, network traffic analysis, finance as well as various other fields.
事实上,分数布朗运动已经被广泛应用于水文学、随机网络、金融等各个领域。
应用推荐