By the Test Function method, this paper deals with the nonexistence of global weak solution to PDEs with nonlocal sources.
本文运用试验函数法研究了带有非局部源的偏微分方程的全局弱解的不存在性,内容包括椭圆方程、发展方程全局解的不存在性以及双曲型方程的局部弱解的不存在性。 本文的主要内容分为三章。
参考来源 - 试验函数法在非线性偏微分方程中的应用For a class of nonlinear hyperbolic equations,the existence and uniquess of a global weak solution are obtained,the dependent relation of existential interval of a classical solution on data is gained too.
对一类非线性双曲方程给出了整体弱解的存在唯一性及古典解关于时间的存在区间对资料的依赖关系。
参考来源 - 一类非线性一阶双曲方程 A Class of the first order nonlinear hyperbolic equationIn Chapter 2,by constructing the modified potential well W associated with (1)-(3) and using a new Gronwall type integral inequality,we obtain the global weak solution for the problem (1)-(3) with r>0,by applying Galerkin method.
在第二章中,当r>0时,通过构造问题(1)—(3)的修正位势井W并借助于一个新的Gronwall型积分不等式,应用Galerkin方法和紧致性定理证明了问题(1)—(3)存在整体弱解,主要结论为:定理1.设r>0,若u_0∈W,u_1∈H_0~1且,则问题(1)—(3)存在整体弱解。
参考来源 - 具结构阻尼的非线性梁方程的初边值问题·2,447,543篇论文数据,部分数据来源于NoteExpress
In this paper, we prove the existence and uniqueness of global weak solution of non Newton Filtration equation with a kind of nonlinear boundary condition.
本文讨论了在一维情况下一类非牛顿流初边值问题整体解的存在唯一性。
By the methods of operator semigroup and apriori estimates, the existence and uniqueness of the global weak solution and the global strong solution for the system are obtained.
利用算子半群方法和先验估计,证明了该问题整体弱解和整体强解的存在唯一性。
But the uniqueness of the weak solutions and the global existence of the classical solution are not obtained.
另外,本部分还研究了相应问题古典解的爆破准则。 关于弱解的唯一性和古典解的整体存在性尚未得到证明。
应用推荐