这里所使用的峰态的定义是被 Wolfram MathWorld 所使用的定义(包含了对不同的分布的峰态超越(kurtosis excess)的方程表)而不是 kurtosis used by Wikipedia 中“峰态”和“峰态超越”看作是相同量所使用的定义。
基于16个网页-相关网页
In the security market, return-loss distribution exist the severe phenomenon of excess kurtosis and heavy tail;
证券市场上收益率分布存在严重的偏峰厚尾现象;
My results show that there are significantly volatility, excess kurtosis and heteroskedasticity, persistence and asymmetric effect in Chinese Stock Market.
实证结果表明:我国股价波动具有尖峰厚尾特征、异方差性特征和波动的持续性和非对称特征;
应用推荐