提要365:残值定理(Residue Theorem)的应用(3)以下说明残值定理(Residue Theorem,或译为留数定理)的第三个应用范例 范例一 试再解析
基于48个网页-相关网页
cauchy residue theorem 柯涡数定理 ; 柯西残数定理 ; 残数定理 ; 柯西留数定理
Euler's quadratic residue theorem 欧拉准则
logarithmic residue theorem 对数留数定理
extended residue theorem 推广的留数定理
cauchy's residue theorem 柯西残数定理
generalized residue theorem 广义留数定理
cauchy s residue theorem 柯西残数定理
cauchy ' s residue theorem 柯西残数定理
In the second chapter, by means of Cauchy residue theorem, author devises contour integration and integrand function to establish two trigonometric identities involvingdouble free parameters, which yields a series of trigonometric sum formulae.
第二章利用Cauchy留数定理,通过设计积分围道和被积函数,建立两个含有双自由参量的三角函数恒等式,在此基础上得到了一系列三角和公式。
参考来源 - 有限三角函数和的经典分析方法·2,447,543篇论文数据,部分数据来源于NoteExpress
以上来源于: WordNet
The traditional logarithmic residue theorem is generalized, so a general conclusion is given to solve the calculating for residue.
推广了留数理论中的对数留数定理,给出了一般性的结论,从而解决了一类函数的留数计算问题。
In the textbook of higher algebra, it is familiar to us that the remainder in the division operation of polynomial is on the basis of residue theorem and operated through division algorithm.
在高等代数教课书中,关于多项式的除法运算中余项的确定是以余式定理为依据且利用带余除法进行的,这是大家所熟悉的。
This paper proves fundamental theorem of algebra with Liouville's theorem , logarithmic residue theorem , argument principle, Rouche theorem, maximum (minimum)modules principle and zero point theorem.
研究和总结了用复变函数的观点与方法来证明代数基本定理。
应用推荐