4 统计学习理论(statistical learning theory SLT)是一种专门研究小样本情况下机器 学习规律的理论。Vapnik 等人从六、七十年代开始致力于此方法的研究,到九十年代 中期,随着其理...
基于14个网页-相关网页
The basic statistical learning theory (SLT) and its corresponding algorithms, support vector machines (SVMs), are surveyed, and especially, its latest research results are summarized and studied.
为了系统地归纳统计学习理论与支持向量机的基本思想和算法,总结目前该领域的最新研究成果。
Support vector machine (SVM) is a novel and powerful learning method which is derived based on statistical learning theory (SLT) and the structural risk minimization principle.
建立在统计学习理论基础之上的支持向量机(SVM),是一种基于结构风险最小的小样本机器学习方法。
Support Vector Machines(SVM) are developed from the theory of limited samples Statistical Learning Theory (SLT) by Vapnik et al. , which are originally designed for binary classification.
支持向量机(SVM)是建立在统计学习理论基础上的一种小样本机器学习方法,用于解决二分类问题。
应用推荐