In order to get the convergence properties of the weak set-valued Amart, we firstly proved the theorem that the limit of support functions is a support function.
为了得到关于弱集值渐近鞅的收敛性质,首先证明了支撑函数列的极限亦为一支撑函数。
By using the generalized support function, we can get the integral for the power of chords of a convex set.
本文研究了凸域内定长线段的包含测度问题,利用广义支持函数和限弦函数,得到了一类特殊凸域的包含测度。
Some relationships among the support function and indicator function of a convex set and their second-order epi-derivatives are given.
利用集合的表示函数、支撑函数、距离函数和投影等研究闭凸体的典范表示及点到边界的投影特征。
应用推荐