the undecidability of first-order logic 一阶逻辑的不可判定性
When the domain of interpretation is finite and its size is a fixed positive integer, the satisfiability problem in the first-order logic can be reduced to SAT.
当解释的论域是一个固定大小的有限集合时,一阶逻辑公式的可满足性问题可以等价地归约为SAT 问题。
The logic is that parse will look first for a string, then for an integer, and finally for a real, in that order, in the input stream.
这里的逻辑是 parse 将在输入流中首先查找一个字符串,然后查找整数,最后查找一个实数。
This result can be used to prove the completeness theorems of first order logic system and the universal refutation method proposed by us.
这一结果可以用于证明一阶逻辑形式系统和我们所提出的广义反驳方法的完备性。
应用推荐