The radial basis function network (RBFN) has good extensible and classified (ability).
径向基函数网络具有良好的推广能力和分类能力。
The radial basis function network is proposed to use in the determination of pulp kappa number with near-infrared spectroscopy in order to increase precision of kappa number determination.
为了提高制浆过程中的在线预测纸浆卡伯值的精度,提出采用径向基函数网络来建立纸浆卡伯值近红外光谱法在线测量模型。
An efficient model based on radial basis function neural network and intelligent estimating method for data fusion of the turbine-generator is presented.
该文提出一个有效的基于径向基函数神经网络的模型和状态数据融合的汽轮发电机智能估计方法。
应用推荐