Geometry has two great treasures, one is the theorem of Pythagoras; the other, the division of a line into extreme and mean ratio .
几何学有两大珍宝,其一是毕达哥拉斯定理,另一个是分一线段为中外比。
Even if admit this view, in the western countries the time of first proof of the Pythagoras theorem is not probably early than epoch ago 585 year.
即使承认这一看法,西方最早给出勾股定理证明的时间也不会早于公元前585年,即相传毕达哥拉斯出生的那一年。
Pythagoras, who is remembered for his theorem about the sides of a right-angled triangle, lived around 540 BC, while Euclid, the best known geometer of the ancient world, lived around 300 BC.
生活在公元前540年左右的毕达哥拉斯,便提出了闻名于世的关于直角三角形各边的 勾股定理 。古代最知名的几何学家欧几里得生活在公元前300年左右。
First of all, it's clear from the Pythagoras' theorem that a is the square root of ^2 + ^2.
首先,根据毕达哥拉斯定理,勾股定理在西方被称为"毕达哥拉斯定理"
If you give me a pair of numbers, Ax and Ay, that's as good as giving me this arrow, because I can find the length of the arrow by Pythagoras' theorem.
如果给我一组数字,Ax 和 Ay,就相当于给了我这个箭头示意图,因为我可以利用毕达哥拉斯定理定理求出模长
应用推荐