这个方程的解在数学上一般并不唯一,文献[1]提出的粘性解(viscosity solution)是唯一与实际相符合的解,也是数值方法所要寻求的解.这种粘性解是Lipschitz连续的,但解的导数可能有间断,不管初值如有多光滑.
基于2494个网页-相关网页
low viscosity solution 低粘度溶液
Periodic viscosity solution 周期黏性解
constraint viscosity solution 约束粘性解
constrained viscosity solution 受约束的粘性解
viscosity solution fast marching method 粘度的解决方案快速推进法
solution-solvent viscosity ratio 溶液溶剂粘度比 ; 溶液技术
provides lower solution viscosity 提供了较低的溶液粘度 ; 解决办法提供了低粘度
lalex solution viscosity 胶乳溶液粘度
Also, the result we got in this Chapter including many significant results, especially the one in Chapter two. At the same time we proved independently the existence of the viscosity solution to this problem.
而所得的结果包含了许多具体的有意义的问题,特别是包含了第二章,同时我们独立地给出了粘性解存在性的证明。
参考来源 - 非线性退化抛物型方程解的存在性与正则性Through the dynamic programming approach and the Girsanov change of measure, we characterize the value function as the unique viscosity solution of a linear parabolic partial differential equation and obtain the Feynman-Kac representation of the value function.
利用动态规划原则以及Girsanov变换方法,我们得到最优值函数是一线性抛物偏微分方程的唯一粘性解。
参考来源 - 马氏调节过程在保险与金融中的应用·2,447,543篇论文数据,部分数据来源于NoteExpress
以上来源于: WordNet
This paper gives a proof of a comparison theorem on the viscosity solution of HJB Equation.
证明了与随机控制问题有关的动态规划方程粘性解的比较定理。
Focusing on the high error and time consuming of the algorithms for shape from shading (SFS), a fast viscosity solution algorithm of perspective SFS (PSFS-FVS) is proposed.
针对传统的从明暗恢复形状(SFS)算法存在误差大、耗时长的问题,提出了一种SFS的快速黏性解算法(PSFS - FVS)。
This method not only can be used as a general way for viscosity measurement, but also can be used to monitor the chemical reaction by monitoring the change of solution viscosity.
这种方法不仅可以作为液体粘度的一般性测量方法,也可以通过检测溶液粘度变化来监测溶液中的化学反应。
应用推荐