...豆丁网 0)16—0166—03 文献标识码:A 中图分类号:TP311.52 1 概述 在实际应用中,K 近邻分类器(K Nearest Neighbor Classifier, KNNC)容易受到冗余特征或者训练数据不足的影 响,从而导致维数灾难。维数灾难可以通过多分类器融合解 决。
基于4个网页-相关网页
In the process of researching post-classification comparison method this paper improve K-nearest neighbor classifier and gain better detection result.
在分类结果比较法的研究过程中,针对城区变化检测的特定问题,改进了经典k近邻法,获得了较好的变化检测结果。
At the same time, testing the order by K-nearest neighbor classifier which is also comes from data mining and the result proves the correctness and feasibility of this method.
同时,运用数据挖掘中的K -最临近分类方法对所得出的强弱顺序进行测试,结果表明了这种区分方法的正确性、可行性。
The experimental comparisons show that this algorithm outperforms traditional KPCA and K-Nearest Neighbor classifier on both feature extraction and classification.
通过实验比对可知该算法效果在特征提取和分类方面均优于传统核主成分分析法以及最近邻分类器。
应用推荐