Base on these, we propose a kernel function include fractional inner-product model which is better fulfill these properties, and apply it to kernel principle component analysis.
在此基础上,提出了更好的满足这些性能的小指数点积核函数,并将应用到主分量分析中。
In this paper, kernel independent component analysis (KICA) 's principle and algorithm are introduced, and then the KICA comparison with some other ICA and principal component analysis (PCA) is given.
论文介绍了基于核空间的ICA的原理和基本算法,然后介绍了该算法与典型ICA和主成分分析(PCA)在盲源信号分离中的比较。
应用推荐