The creep of a skin layer under a distributed surface pressure was solved by an analytical method using Hankel transform and Laplace transform.
本文利用积分变换方法求解皮肤层在表面压力作用下的蠕变响应问题。
At first, we get the integro-differential equation satisfied by the expected discounted penalty function by using the method of renewal, and hence Laplace transform of it is derived.
首先通过更新论证的方法得到罚金折现期望满足的积分-微分方程,然后推导拉普拉斯变换的表达式,并就索赔额服从指数分布的情形得到了罚金折现期望的精确表达式。
A method for determining kinetics rate constants of complex reactions by using Laplace transform is proposed.
本文提出了用拉普拉斯变换求复杂网络反应动力学速度常数的方法。
应用推荐