...并描述了三种经典文本分类算法:简单贝叶斯分类算法(Naïve Bayesian,NB)、支持向量机分类算法(Support Vector Machine,SVM)、K-最近邻接参照分类算法(K-Nearest Neighbor) [目录] 1 Web文本挖掘 ...
基于1个网页-相关网页
对于已知行为,采用加权支持向量机分类算法来识别其行为类别;
For the known activities, the weighted support vector machine (WSVM) is used to recognize their types.
针对基于基因表达数据的分类,本文从特征基因选择和支持向量机分类算法两个方面进行了改进。
This thesis improves classification using gene expression data method in two aspects: feature selection and SVMs classification algorithm.
其中,利用支持向量机分类算法得到的分类模型对呆鲦鱼和蜜蜂毒性测试集的整体预测准确度分别达到95.9%和95.0%。
The overall predictive accuracy of the classification models using support vector machine were 95.9% for the fathead minnow test set and 95.0% for the honey bee test set.
应用推荐