...复杂度为O(mn),复杂度很高。因此,为了减少复杂度,当m很大时,我们更多时候使用随机梯度下降算法(stochastic gradient descent),算法如下所示: 即每读取一条样本,就迭代对ΘT进行更新,然后判断其是否收敛,若没收敛,则继续读取样本进行处理,如果所有样本...
基于38个网页-相关网页
随机并行梯度下降算法 stochastic parallel gradient descent algorithm
就随机并行梯度下降(SPGD)最优化算法在光束净化系统中的应用展开研究。
This paper researches the application of the stochastic parallel gradient descent (SPGD) optimization algorithm on the beam cleanup system.
基于随机并行梯度下降(SPGD)算法,32单元变形镜,CCD成像器件等建立了无波前传感自适应光学系统实验平台。
Based on stochastic parallel gradient descent (SPGD) control algorithm, an adaptive optics test-bed without a wave-front sensor was built with a 32-element deformable mirror and a CCD.
随机并行梯度下降(SPGD)算法可以对系统性能指标直接优化来校正畸变波前。
The stochastic parallel gradient descent (SPGD) algorithm can optimize the system performance indexes directly to correct wavefront aberration.
应用推荐