研究具松弛项可压缩的欧拉方程组柯西问题。
A study is made on Cauchy problem of compressible Eulers equations with relaxation term.
通过两个算例验证了完全欧拉方程组的正确性。
The correctness of the complete Euler equation set is verified with two functional examples.
通过两个算例验证了完全欧拉方程组的正确性。
The complete Euler equation set contains all kinds of Euler equations of the variational problems.
利用再生核理论和有限差分法给出了一种计算欧拉方程组的新方法。
A new method for calculating Euler equations is presented by means of the theory of reproducing kernel space and finite difference method.
利用再生核理论和有限差分法给出了一种计算欧拉方程组的新方法 。
The governing equation is 3D Euler equations, which is solved by the finite volume method.
建立了基于欧拉方程组的二维振荡机翼非定常气动设计反命题方法的数学模型。
A mathematical model for the inverse problem of unsteady aerodynamic design of 2-d oscillating airfoil based on Euler equations is proposed.
本文研究了理想气体的带线性退化阻尼项的可压缩欧拉方程组的真空初值问题。
The Cauchy problem of Euler equations with degenerate linear damping for a perfect gas is studied in this paper, while the initial gas lies in a compact domain.
本文用时间推进法求解欧拉方程组计算二维平面叶栅绕流问题数值实验是否有多重解现象。
The mutiple-solution phenomenon of steady transonic flow about two-dimensional plane cascade using the Time-Marching method for the Euler equations is examined.
在计算空间以逆变速度分量为未知变量的欧拉方程组为控制方程,从而简化壁面边界的处理。
The governing equations on the transformed space are formed by using the contravariant velocity components of the Euler equations, the treatment on the wall boundaries is simplified.
通过计算二维可压缩流欧拉方程组的几个算例,数值结果表明,该格式具有高精度、高分辨率及计算简单的特点。
Numerical results of two-dimensional Euler equations of compressible gas dynamics verify the accuracy and robustness of the method.
该方法将原参数非定常欧拉方程组重新组合成以广义黎曼变量表示的欧拉方程组,再用二点二步迎风格式离散求解。
Euler equations of generalized Riemann variable are derived from unsteady primitive variable Euler equations and solved by using two - a point-two-step upwind finite difference method.
该方程组涵盖了变分问题的各种欧拉方程。
The complete Euler equation set contains all kinds of Euler equations of the variational problems.
本文在前人研究的面着色问题基础上,运用欧拉公式和握手定理通过解方程组得到连通平面图的面色数。
In this paper, Euler's formula and Handshaking lemma is used to obtain the face chromatic number of a planar graph by solving equations.
采用降阶和特征根 (欧拉 )方法 ,给出了一类三维二阶常系数微分方程组的通解公式 ,并通过算例与拉氏变换法进行了比较。
With the variable replacement method, general solution formulae were given to the linear differential systems with complex constant coefficients and that with a class of complex variable coefficients.
采用降阶和特征根 (欧拉 )方法 ,给出了一类三维二阶常系数微分方程组的通解公式 ,并通过算例与拉氏变换法进行了比较。
With the variable replacement method, general solution formulae were given to the linear differential systems with complex constant coefficients and that with a class of complex variable coefficients.
应用推荐