The system has an SU (2) algebraic structure.
该系统的哈密顿量具有SU(2)代数结构。
It reflects the algebra in other algebraic structure of the basic idea.
它体现了代数学中研究其他代数结构的基本思路。
The paper also investigates the algebraic structure of the binary digital coding of RNA.
还研究了RNA二进制编码的代数结构。
Then we research the character, properties, and algebraic structure of supporting solution systems.
然后研究支撑解系的特征、性质、代数结构。
This Paper study the intersection and union operations, with it establishes the algebraic structure of equivalence relations.
本文主要研究了等价关系的交并运算,建立了等价关系对于交并运算的代数结构。
Some subjects of modern mathematics, such as the algebraic structure theory and functional analysis, would be found in the Matrix theory.
近代数学的一些学科,如代数结构理论与泛函分析可以在矩阵论中寻找到它们的根源。
The influences of isolated points on algebraic structure of approximate space and description of rough equality by crisp sets are discussed.
讨论近似空间中的孤点对其代数结构以及粗相等的清晰集刻画的影响。
Algebraic dynamical method is an effective method to deal with the dynamical evolution of such systems by making use of its algebraic structure.
代数动力学方法便是求解该系统的一种有效方法。该方法利用系统的代数结构使系统按照动力学规律随时间演化。
In this article, we showed the algebraic structure of syntactic categories based on monoid and defined categorial equation whose solutions are described by consistency and correlation .
本文给出了建立在含幺半群基础上的范畴语法的代数结构 ,定义了范畴方程和它的解并对范畴方程的解作了分类 :相容性的相关性。
There exist a number of typical systems and models which possess the three generator Lie algebraic structure in quantum optics, atomic and molecular physics and condensed matter physics.
在量子光学、凝聚态物理、原子分子物理中存在许多典型的具有三生成元李代数结构的量子系统或模型。
Lie group Machine learning (LML) inherit the advantages of manifold learning method and make full use of the Lie group's structure of algebraic and geometry in mathematics.
李群机器学习(LML)既继承了流形学习的优点,又充分利用了李群的代数结构和几何结构的数学本质,自提出以来就引起了许多研究者的关注。
This paper analyses the general form of algorithm about continous model, therefore puts forward the type of structure of parallel algorithm of linear algebraic equations.
本文分析了连续模型一种并行算法的一般形式,由此提出了线性代数方程组通用的并行算法的结构形式。
The graphic structure analysis for algebraic relationship of rough sets is a new research direction of the rough set theory.
粗糙集代数关系的图结构分析是粗糙集理论中又一研究方向。
The application of numerical value method to structure analysis leads to solving a set of algebraic equation.
结构分析的数值方法最终归结为代数方程组的求解。
An identification edge structure is put forward to represent non manifold modeling, which is built on the concepts and methods of the complex and CW complex in algebraic topology.
提出了一个非流形结构的表示方法——粘合边结构,其数学基础是代数拓扑中的复形理论。
Based on algebraic graph theory, an intergrated project of distribution network to identify the distribution network structure, fault locating and reconfigure it.
根据电工图论原理,提出了整套配电网结构辨识,故障定位隔离以及故障后重构的方案。
A series of conclusions reveals a linear structure of Boolean function restricts algebraic immunity.
一系列的结论揭示了布尔函数的线性结构对其代数免疫阶的制约作用。
By using the orthogonality condition of augmented eigenvector of multibody system, the algebraic equation group with unknowns of structure parameter is formed.
利用多体系统增广特征矢量的正交性条件,可建立以系统物理参数为未知数的代数方程组。
In this paper we investigate algebraic properties of the set of local formations which satisfy n, and for such formation we give the structure of minimal non group.
本文研究了满足条件N的局部群系集合的代数性质,同时对于这类群类,给出了极小非-群的结构。
The standard singular point is an important structure of the differential-algebraic equation systems(DAEs), by which DAEs are differentiated from the ordinary different equation systems (ODEs).
标准奇异点是微分代数方程系统区别于常微分方程系统的一个标志性的拓扑结构,具有重要的理论研究意义。
After partial differential equations was changed into cubic algebraic equation, accurate solution of the structure was able to be obtained.
将偏微分控制方程化为三次代数方程,获得结构内力的精确解。
One functions and the algebraic conditions which can be regarded as constants of motion and Hamiltonian functions for a suitable Poisson structure of GLV systems are given.
基于保守系统存在能量积分的特点,由系统的运动微分方程导出了哈密尔顿函数,并用它作为参数识别的数学模型。
One functions and the algebraic conditions which can be regarded as constants of motion and Hamiltonian functions for a suitable Poisson structure of GLV systems are given.
基于保守系统存在能量积分的特点,由系统的运动微分方程导出了哈密尔顿函数,并用它作为参数识别的数学模型。
应用推荐