SVM transforms machine learning to solve an optimization problem, and to solve a convex quadratic programming problem by the optimization theory and method constructing algorithms.
它将机器学习问题转化为求解最优化问题,并应用最优化理论构造算法来解决凸二次规划问题。
One method of solving the problem of sphere-constrained convex quadratic programming;
介绍一种求解高维凸二次规划的可行方向法。
One method of solving the problem of sphere-constrained convex quadratic programming;
介绍一种求解高维凸二次规划的可行方向法。
应用推荐