Based on the geometrical nonlinear finite element (GNFE) theory, a curved quadrilateral isoperimetric element with 8 nodes for initial form analysis of tensile membrane structures is presented.
本文根据几何非线性有限元理论,提出张力膜结构初始形态分析的8结点曲面四边形等参单元。
By the present method, a new incompatible curved quadrilateral plane element with eight nodes is obtained.
利用这一方法得到一个新的八节点四边形平面应力单元。
Based on geometrical nonlinear finite element theory, a curved quadrilateral isoperimetric element with 8 nodes for initial form analysis of tensile membrane structures is presented.
根据几何非线性有限元理论,提出张力膜结构初始形态分析的8结点曲面四边形等参单元。
Based on the geometrical nonlinear finite element (GNFE) theory, a curved quadrilateral isoperimetric element with 8 nodes for initial form analysis of tensile membrane structures is presented.
根据几何非线性有限元理论,提出张力膜结构初始形态分析的8结点曲面四边形等参单元。
Based on geometrical nonlinear finite element theory, a curved quadrilateral isoperimetric element with 8 nodes for initial form analysis of tensile membrane structures is presented.
本文根据几何非线性有限元理论,提出张力膜结构初始形态分析的8结点曲面四边形等参单元。
Based on the geometrical nonlinear finite element (GNFE) theory, a curved quadrilateral isoperimetric element with 8 nodes for initial form analysis of tensile membrane structures is presented.
本文根据几何非线性有限元理论,采用8结点曲面四边形等参单元,编制了用于张力膜结构内力分析的有限元程序。
Based on geometrical nonlinear finite element theory, a curved quadrilateral isoperimetric element with8 nodes for initial form analysis of tensile membrane structures is presented.
根据几何非线性有限元理论,提出张力膜结构初始形态分析的8结点曲面四边形等参单元。
The internal forces in tensile membrane structures were analyzed using geometrical nonlinear finite element theory using curved quadrilateral isoperimetric 8 node elements.
本文根据几何非线性有限元理论,采用8结点曲面四边形等参单元,编制了用于张力膜结构内力分析的有限元程序。
The internal forces in tensile membrane structures were analyzed using geometrical nonlinear finite element theory using curved quadrilateral isoperimetric 8 node elements.
本文根据几何非线性有限元理论,采用8结点曲面四边形等参单元,编制了用于张力膜结构内力分析的有限元程序。
应用推荐