A brief review by the progress of advanced statistical mechanics, integral equation and perturbation theory for electrolyte and non-electrolyte solutions in recent years is presented.
用近代统计力学研究成果——积分方程理论和微扰理论简要评述了电解质和非电解质溶液的国内外研究进展。
A class of singular perturbation of nonlinear boundary value problem for integral differential equation involving two parameters is considered.
考虑了一类关于两个参数的微分积分方程非线性边值问题的奇摄动。
The simulated results are analyzed and compared with those predicted from perturbation theory and integral equation theory under mean spherical approximation.
模拟结果与微扰理论和平均球近似积分方程理论的预测值进行了比较。
In 2d polar coordinates, the exact solution to the Schrdinger equation was used to calculate the perturbation integral in a parabolic confinement potential.
受限势采用抛物形势,在二维平面极坐标下,用薛定谔方程的精确解析解进行计算。
In 2d polar coordinates, the exact solution to the Schrdinger equation was used to calculate the perturbation integral in a parabolic confinement potential.
受限势采用抛物形势,在二维平面极坐标下,用薛定谔方程的精确解析解进行计算。
应用推荐