This article explores the four ways for solving integral inequality with the nature of definite integral, mean value theorem of differentials, Schwarz inequality and double integral.
本文利用定积分的性质、微分中值定理、施瓦兹不等式、二重积分等内容,研究了积分不等式的四种证法。
This paper discusses the generating functions of monotony for the Power-Mean Inequality, Binary dimension power mean inequality and Binary integral power mean inequality.
给出了幂平均不等式及其推广、二维加权幂平均不等式等的构成函数,并讨论了它们的单调性。
In the article, a simple and elementary proof of monotonicity is given for the so-called extended mean values using Tchebycheff s integral inequality and the mean-value theorem for differential.
本文利用切比雪夫积分不等式和微分中值定理,对所谓的双参数拓广平均的单调递增性给出一种简单的证明。
In the article, a simple and elementary proof of monotonicity is given for the so-called extended mean values using Tchebycheff s integral inequality and the mean-value theorem for differential.
本文利用切比雪夫积分不等式和微分中值定理,对所谓的双参数拓广平均的单调递增性给出一种简单的证明。
应用推荐