Minimum distance classifier based on between-class and within-class scatter is proposed.
提出了一种基于类内类间离散度的最小距离分类器设计方法。
The experimental results show that the KDDA features achieve the best recognition performance, and the SVM classifier outperforms the minimum Euclidean distance classifier.
结果表明,SVM分类器的识别性能优于最小欧氏距离分类器,且KDDA特征的识别性能最优。
The experimental results show that the KDDA features achieve the best recognition performance, and the SVM classifier outperforms the minimum Euclidean distance classifier.
结果表明,SVM分类器的识别性能优于最小欧氏距离分类器,且KDDA特征的识别性能最优。
应用推荐