Four wheels steering control for vehicle with constraints on side slip Angle is studied in this paper.
本文研究侧偏角有约束条件下,汽车四轮转向控制系统的设计问题。
A desirable vehicle model with the best performance of side slip Angle and yaw rate is established through connecting direct yaw moment control (DYC) with four wheel steering (4ws) system.
将横摆力矩控制(dyc)与四轮转向(4ws)系统相结合,建立侧偏角和横摆角速度具有最佳输出响应的车辆理想模型。
In this control strategy, the steering radius and the vehicle velocity is utilized to control the drive force and steering Angle of each electric-wheel.
此控制策略根据汽车的转向半径和行驶速度来控制各电动轮输出的驱动力和转向角。
Control signal was sent to Controlling Module. Brushless motor and steering component changed the steering Angle in order to avoid obstacles.
控制执行模块接收到控制信号后,通过触发无刷电机驱动转向机构,改变被控对象的行驶方向,从而实现避障。
MCU USES the PID algorithm, Real-time control of the vehicle steering Angle of the steering gear and road speed. At last, implementation of the entire system of double-loop control is introduced.
MCU采用PID算法,对小车的舵机转向角度及行进速度进行实时控制,实现了整个系统的双闭环控制。
As an instance, DLQR was applied in determining the control input in the front steering Angle compensation control (FSAC) model for heavy duty vehicles.
作为应用举例,DLQR用于重载汽车前轮舵角补偿控制(FSAC)模型中确定控制输入。
Analysised the relationship of the projection distance to the vehicle body of centroid and the steering center of the vehicle under the conditions of the other side of the Angle control strategy.
分析了在零侧偏角控制策略的条件下,车辆的质心和转向中心在车身上投影距离的关系式。
Based on a zero sideslip Angle proportional control, we get the gain of the distance from the centroid to the steering center position, yaw angular velocity and lateral acceleration.
在此基础上,得到车辆采用零侧偏角控制策略时,车辆转向中心到质心的距离,横摆角速度增益及侧向加速度增益的表达式。
Based on a zero sideslip Angle proportional control, we get the gain of the distance from the centroid to the steering center position, yaw angular velocity and lateral acceleration.
在此基础上,得到车辆采用零侧偏角控制策略时,车辆转向中心到质心的距离,横摆角速度增益及侧向加速度增益的表达式。
应用推荐