• The SVM (Support vector Machine) classifies the data by mapping the vector from low-dimensional space to high-dimensional space using kernel function.

    SVM(支持向量)引进函数隐含的映射把低特征空间中的样本数据映射高维特征空间实现分类。

    youdao

  • Kernel Methods are concerned with mapping input data into a higher dimensional vector space where some classification or regression problems are easier to model.

    核函数方法关心怎样把输入数据映射一个维度矢量空间这个空间中,某些分类或者回归问题可以容易地解决。

    youdao

  • Kernel Methods are concerned with mapping input data into a higher dimensional vector space where some classification or regression problems are easier to model.

    核函数方法关心如何把输入数据映射一个维度矢量空间这个空间中,某些分类或者回归问题可以容易地解决。

    youdao

  • The received mixing signals are first mapped to high-dimensional kernel feature space, and a feature vector basis given by the fitness function of the kernel feature space is constructed.

    接收混合信号首先被映射高维内核特征空间内核特征空间上的适应度函数给出的特征矢量基础构造。

    youdao

  • The received mixing signals are first mapped to high-dimensional kernel feature space, and a feature vector basis given by the fitness function of the kernel feature space is constructed.

    接收混合信号首先被映射高维内核特征空间内核特征空间上的适应度函数给出的特征矢量基础构造。

    youdao

$firstVoiceSent
- 来自原声例句
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定